21273

B. Sc. (Physics) (Hons.) 2nd Semester Examination – May, 2019

ELECTRICITY

Paper: Phy-2000

Time: Three hours]

[Maximum Marks : 40

Before answering the questions candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

- Note: (i) Each Unit have four questions, student have to attempt at least two questions from each Unit.

 A student has to attempt at least five questions in all.
 - (ii) Use of scientific (Non-programmable) calculator is allowed.

UNIT - I

 (a) Explain how the hysteresis curve shows that the material is suitable for the purposes such as:

P. T. O.

- (i) transformer
- (ii) a permanent magnet
- (b) Show that the area enclosed by B-H loop denotes the energy dissipated per unit volume of the material during each cycle of magnetization.
- 2. (a) State and prove ampere circuital law. 3
 - (b) Explain the curl and divergence of \vec{B} .
 - (c) What do you mean by scalar and vector potential?

2

- Find an expression for the magnetic field due to a solenoid of very large length at the middle and at the one end of the solenoid.
- (a) Find an expression for the torque on a current carrying loop in a uniform magnetic field with all special cases.

(b) A conductor of length 2m carrying current amp is held parallel to an infinitely long con carrying current of 10 amp. at a distance of mm. Find the force on the small conductor.

UNIT - II

- 5. Explain the following terms that (a) Self induction with the following terms that (b) and (c) are the following terms that (c) ar
 - (a) Self induction
 - (b) Mutual induction
 - Reciprocity theorem
 - (d) Show that the quantity $\frac{1}{\sqrt{\mu_0 \epsilon_0}}$ have unit velocity.
- 6. Explain Faraday's law of electromagnetic induction a conducting loop moving in a uniform magnetic fiel
- 7. (a) Deduce an expression for the energy stored i magnetic field.
 - (3)

P. T. 0

- (b) A circular loop of wire with a diameter of 12 cm is in a 1.8 Tesla magnetic field. The loop is removed from the magnetic field over a time 0.25 sec. What is the induced emf in the loop.
- (n) State and explain Faraday's law of electromagnetic induction deduce the expression $\vec{\nabla} \times \vec{E} = \frac{-\partial \vec{B}}{\partial t}.$ 5
- (h) The Electric field component of a e. m. wave is given by $\vec{E}_x = \vec{E}_z = 0$ and $\vec{E}_y = E_0 \cos\left(\frac{2\pi x}{\lambda}\right)$ cos wt. Calculate the expression for magnetic field B.